
The C/C++ Environment

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

1

The C++ Environment

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

The C/C++ Environment

.

2

Objectives
This unit is meant as an introduction to the C language. Our aim is to give a reasonably but
thorough introduction to the “procedural” elements of the language.

The topics discussed in this Unit
• Introduction
• Basic concepts
• The lay-out of your C program.
• Comments in a C program

Introduction

C is the most common used program language for system developers, but can be used for a
wide range of applications. More and more people turn to the C programming language for
this reason. The C programming language is often called a 'middle level language' because in
C is possible to work on a lower level than in higher level languages as Pascal, Modula 2 and
Fortran.

C is however a language with certain pitfalls that is the programmer can easily create a bug if
he (or she) is not very accurate with the layout of the program. It is rather easy to make a
mistake that can cause the computer to lock-up or cause memory problems.

This chapter will handle the basic concepts you need to know before creating your own C
program.

2

 Short History of C and C++

 Steps for a C++ Program

 Structure of a C++ Program

 Conventions and Standards

 Placing Comments

 Compiling and Linking

Overview

The C/C++ Environment

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

3

Short History
C is developed because there was a need for a powerful language that was transferable to
different systems. This means that a program can be converted to work on different machines
with as little changes to the code as possible. This is a contrast with programs written in
assembly code. Assembly code is very machine dependent these programs need to be
completely rewritten to work on a different type of system.
C also allows us to create more complex and efficient programs.
C was first used for a transferable operating system UNIX. Most today used programs are
written in C although C++ is marching up.
Dennis Ritchie is the brain behind the language C. The definition of the C-language was first
given by Brian Kernighan and Dennis Ritchie in the book The C Programming Language.
Later the ANSI committee created a universal standard for this language. This ANSI standard
was finished in 1989.
When creating programs it is important to make the code compliant with this standard so that
it is compatible with all compilers that support the ANSI standard.

3

 Developed by Kernighan and Ritchie (K&R)

 Developed for compatibility reasons

 Developed at the same time as UNIX (1969-1973)

 ANSI developed an international standard (1989), adopted by ISO
(1990)

 Standards: C89/C90 and C99

History of C

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

The C/C++ Environment

.

4

Short History

Development of C++ was started in 1979 by Bjarne Stroustrup as an enhancement to the C
language. Originally it was called “C with Classes” and in 1983 it was renamed to C++.

Enhancements to the C language are object oriented programming, operator overloading and
later exception handling and templates (generic programming). The first ISO standard was
ratified in 1998 and updated in 2003. The upcoming 2011 standard (formerly known as
C++0x) will add many new features like lambda functions and move semantics.

4

 Developed by Bjarne Stroustrup

 Adds object-oriented and generic programming constructs to C

 Started in 1979, known as C++ since 1983, since 1998 an ISO standard

 Standards C++98, C++03, C++0x (future, end 2011)

History of C++

The C/C++ Environment

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

5

Basic Concepts

The objective of this section is to write a very simple C program. When we refer to a program
we refer to the executable. When creating a program first you type in the code (source) which
you store as a text file that usually has the extension .c. This source file is then compiled and
linked to create the executable to which we will refer as the program. Whenever we want to
change a part of the program the source file needs to be modified and compiled to create a
new executable program.

5

 C/C++ Program is the executable Program

 C/C++ Code divided into
 Source files

 Header files

 Source files contain C/C++ Code

 Header files contain common information
 Declarations

 Included in source file(s)

What Makes the C/C++ Program

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

The C/C++ Environment

.

6

Steps
When a source file is compiled the compiler checks the code against the syntax of C and if no
errors occur it creates an intermediate file, an object file (.obj). This object file is fed to the
linker which adds some basic functionality to the file and creates the executable file (.exe).

It is possible to divide your source file in several files which need to be compiled separately.
All the compiled files (.obj) are all fed to the linker which resolves references between the
files and creates the final executable.

6

 Create header and source files

 Use compiler to translate the code

 Link the compiled code into an executable file

 Run the program

Steps for a C/C++ Program

The C/C++ Environment

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

7

Source Files

Are plain text files containing C/C++ Code. A C program can be created from one or more
source files.

Header Files

Are plain text files usually containing declarations (e.g. from a library) that a source file uses.

Pre-processor

The job of the pre-processor is to parse the source file for pre-processor instructions. The pre-
processor changes the source file by for example including header files, expanding macros and
removing code due to conditional compilation constructs.

Compiler

The first job of the compiler is to check the C code against the C syntax. If the compiler
detects an error (compiler error) the compiler terminates with an error message. If the code is
correct the compiler translates the code to an object file.

Linker

It is possible to have a reference in one source file to some function or variable in another
source file or library. The linker solves these references and issues a warning if the reference
cannot be solved.

Project

The project is compiler dependent. Most compilers use a so called project. This project has all
settings for the compiler and linker. Projects typically include information about:
• Compiler flags
• Linker flags
• Source files to be compiler
• Environment

Some compilers do not use a project but a makefile. First consult your compiler manual to see
what your compiler uses.

7777

Compiling C/C++ Program

Source
File 1

(.c/.cpp)

Pre-
processor

Header
Files

(.h/.hpp)

Source
File n

(.c/.cpp)

Pre-
processor

Processed
Source 1 Compiler

Processed
Source n Compiler

Linker Program
(.exe)

Libraries
(.lib)

Optional

Optional

...

Object
File 1

(.o/.obj)

Object
File n

(.o/.obj)

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

The C/C++ Environment

.

8

Structure of a C Program
The C source files consist of a number of functions and variables. All programs must contain
the function main(). This function designates the start of a program. After the program starts
the rest of the program will be a chain reaction of function calls (execution of discrete blocks
of code).

 The best way to set up a source file is to divide the entire source in to small discrete blocks of
code called functions and execute these when needed. These discrete blocks of code can use
and create variables for use in calculations or operations.

In order to have a clear source file it is we need to split each discrete block and even the whole
source file into two discrete blocks of code. These two blocks are one information block and
one actual code block. In C we always have to say what we are going to use (the information
block) and then use it.

8

 Consists of
 Functions

 Variables

 Functions contain statements that describe actions to take

 Variables contain values used in computations

Structure of a C/C++ Source

The C/C++ Environment

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

9

Header File

The statement #include <stdio.h> is a command that tells the compiler (actually pre-
processor) to get the file stdio.h and include it when compiling this source file. This file is
called the header file and mostly contains common information about constants and functions.

main()

main() is a function. This function is the start of your program. Every program must have one
and only one main() function. If your program is created by using several source files you
must make sure that only one source file has a main function. Later more on functions.

9

#include <stdio.h>

void main()
{

printf("This is one line of text\n");
}

Example Program

Import the “stdio.h” header file

Start of program

Function call

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

The C/C++ Environment

.

10

Comments
Most C programmers tend to create very cryptic and unreadable source files. A lot of
programmers do not know what they have created a day earlier if they look at their code. This
is why it is so important to always comment what you are doing. In C comments are placed
between /* and */. All text between these symbols will be discarded by the compiler.
Comments can be placed anywhere in the source file where whitespace is allowed.
Whitespace are the spaces newlines and tabs.

#include <stdio.h>

/* start main */
void main()
{
 int counter; /* counter variable */

 printf("Some text to print\n");/* print the text */
}

Example of Illegal comments

Placing comment is allowed anywhere in the source file it is however not allowed to have
nested comments.

#include <stdio.h>

void main()
{/* start main */
 int counter; /* counter variable */

/*
 printf("Some text to print\n");/* print the text */
*/
}

10

 Comment starts with: /*

 Ends with: */

 No nested comments

 Can be placed where whitespace is allowed

 Place them to increase the readability of the program

 In C++ single line comment with: //

Placing Comments

The C/C++ Environment

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

11

Comment Your Program
As mentioned earlier a source file can become very unreadable. In order to create source files
in a consistent way most companies determine a so called style-guide. This guide has a few
rules for the standard look of a source file.

Besides these style guides it is always good to comment blocks of code in the source.

/*
 Explanation of code to come, or a general description of
 the functions in this source file.
*/

#include <stdio.h>

void main()
{

/* Indent each new block */
 printf("The C Language");/* Indent inside functions */
 printf("This source file looks nice\n");
}

11

 Create a readable source file

 Use comments to clarify the code

 Use newlines and spaces(whitespace) to create a standard look and
feel

 Indent each new block

Lay-Out of Source File

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

The C/C++ Environment

.

12

Printing Values
Printing in C is done by using the printf() function. This function uses a format string to
specify what to print. Normal characters in the string are translated to normal characters and
will be printed. The following example will print a simple string on the screen.

printf("This is a C course");

Everything between the “” will be printed on the screen. This format string can also contain
special specifiers to print values on the screen. The ‘%’ followed by a type tells the printf()
function that following the format string is a value that needs to be printed on the place of the
‘%’ in the string. The character after the ‘%’ specifies what kind of value to print.

printf("An integer value : %d", 10);

It is possible to print more than one value by using the ‘%’ sign every time and passing
enough values to the printf() function using a ‘,’.

printf("Value 1 : %d, Value 2 : %f", 10, 30.0);

The specifier after the ‘%’ must be the same type as the value we want to print. If these two
types do not match the output will be not what we would expect.

Using character constants it is able to add new line characters to the format string.

print("The first line.\nThe second line");

output:

The first line.
The second line.

The next page has a table of the different types of values and a table of the escape characters
we can use in the format string.

12

 Use printf() to send information to the screen

 Uses format string

 Printing text
 printf("String")

 Printing values
 printf("V1: %d, V2: %f", 10, 30.0);

Simple printf() Statements

The C/C++ Environment

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

13

Table of printf codes
Sign Type Output
%c int or char Single character
%d or %i int Signed decimal integer
%o int Unsigned octal integer
%u int Unsigned decimal integer
%x int Unsigned hexadecimal integer using “abcdef”
%X int Unsigned hexadecimal integer using “ABCDEF”
%e or %E double Signed value having the form [–]d.dddd e [sign]dd[d] where d is a single

decimal digit, dddd is one or more decimal digits, dd[d] is two or three
decimal digits depending on the output format and size of the exponent,
and sign is + or –.
%e uses lower case e in the output while %E uses upper case E in the
output.

%f double Signed value having the form [–]dddd.dddd, where dddd is one or more
decimal digits. The number of digits before the decimal point depends on
the magnitude of the number, and the number of digits after the decimal
point depends on the requested precision.

%g or %G double Signed value printed in f or e format, whichever is more compact for the
given value and precision. The e format is used only when the exponent
of the value is less than –4 or greater than or equal to the precision
argument. Trailing zeros are truncated, and the decimal point appears
only if one or more digits follow it.
%G uses upper case E instead of lower case e.

%a or %A double Signed hexadecimal double precision floating point value having the
form [−]0xh.hhhh p±dd, where h.hhhh are the hex digits (using lower
case letters) of the mantissa, and dd are one or more digits for the
exponent. The precision specifies the number of digits after the point.
%a uses “abcdef”. %A uses “ABCDEF”.

n int* Number of characters written so far. This value is stored in the integer
whose address is given as the argument.

p void* Prints the argument as an address in hexadecimal digits.
s char* Print the characters up to the first \o character.

Table of escape sequences
Escape sequence Represents
\a Bell (alert)
\b Backspace
\f Form feed
\n New line
\r Carriage return
\t Horizontal tab
\v Vertical tab
\’ Single quotation mark
\” Double quotation mark
\\ Backslash
\? Question mark
\ooo ASCII character in octal notation
\xhh ASCII character in hexadecimal notation
\xhhhh Unicode character in hexadecimal notation

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

