
Functions and Storage Classes

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

1

Functions and Storage Options

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

Functions and Storage Classes

2

F u n c t i o n s a n d S t o r a g e C l a s s e s
As mentioned in the introduction, C is a function oriented language. A C program is really a
number of function calls. When creating C programs we therefore have to think in a function
oriented way. A function is a discrete block of code which evaluates to a result. You can look at it
as a black box. You put something in it, it performs some calculations and you get a result. When
using functions we do not care how it performs the calculations. All we are interested in is what the
result is and what we have to deliver to the function so that it can perform its calculations.

2

l Functions general

l Scope of variables

l Recursive functions

Overview

Functions and Storage Classes

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

3

F u n c t i o n s a n i n t r o d u c t i o n
A function is a discrete block of code which returns a result. We have already seen a few uses of
functions. For example printf() is a function used for output to the screen. Also the well know
main() is a function namely the start function of your application. If we use the printf() function we
can also look at it as a black box. We give it what we want to print. What actions it needs to
perform to print the actual string on the screen is not what we are interested in.

Creating functions can be divided into two parts:
· Declaring functions
· Defining functions

Declaring Functions
The declaration of a function specifies what the prototype of the function is. It states to the
user and the compiler how the function needs to be used. This prototype consists of three parts:
· Return type: the resulting value of the function
· Name: the name of the function for example printf
· The arguments: the input parameters

3

l A function consists of a return type, name and arguments

l The declaration is a description of the function characteristics
(signature)
<type> name([<arg_type arg, arg_type arg, ...>]);

l The definition is the implementation of the function (body with
code)
<type> name([<arg_type arg, arg_type arg, ...>])

{

}

Function Signatures

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

Functions and Storage Classes

4

This declaration is needed before we are going to use the function. The general form of the
declaration is:

<return_type> function_name([arg_type,...]);

After we declared the function we can use the function by using its name and passing its arguments.

The return type of the function is the resulting value of the function. Most functions in C return a
value which either is the result of some calculation or a condition code. This return value can be
any of the types used in the previous modules. When a function does not return a value we have to
specify this using the type void (nothing)

void function_name();

The argument list is the list of values the function needs to perform its function. This list is not
mandatory. Some functions do not need arguments but just perform some action. If we do pass
arguments we have to specify in the function declaration what the type of each argument is. The
arguments are separated by a comma. If no arguments are passed we have to specify void.

void print(void);
/* returns: nothing
 name: print
 arguments: nothing
*/

int sqr(int);
/* returns: int
 name: sqr
 arguments: one int
*/

int multiply(int,int);
/*
 returns: int
 name: multiply
 arguments: two ints
*/

The function declaration needs to be repeated in every source file where we use the function. If 20
different source files use the function multiply() we have to declare it in all of those source files. An
easier way is to create a so called header file which contains the declarations of commonly used
functions (see next module). Whenever we want to use a function in a source file we only have to
include the header file which contains the declaration of the function. This mechanism has already
been used in the previous chapters. Whenever we wanted to use the printf() function we had to
include the header file stdio.h. Including a header file is done with the statement

 #include <filename.h>

The compiler includes the file specified between the brackets when compiling the code.

Functions and Storage Classes

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

5

Defining Functions
After declaring the function we have to create the function body (implementation). The body of the
function is placed in a source file. This can be any source file. It does not have to be the source file
where the function is used (where the function is declared).
The definition of a function is almost the same as its declaration. The function declaration has a
semi colon (;) at the end. The function definition has no semi colon but the body (implementation)
of the function between brackets.

The body of the function has the following general form.

return_type name([argument list])
{
 /* Declaration of variables */

 /* Executable code */

 /* Ending of function (see next few sections) */
 return [expression];
}

A simple example:

void print(void)
{
 printf("Hello this is a simple function\n");
}

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

Functions and Storage Classes

6

F u n c t i o n C a l l s
After declaring and creating a function we can use it in any other function by executing it. We can
execute a function with a function call. We can call a function by using its name and passing its
arguments between ().

void print(void);

void main()
{
 int a;

 print(); /* Call to function print */
 a = a + 10;
}

void print(void)
{
 printf("Hello this is a simple function\n");
}

The function main() is the start of your application from this function we can call other functions.
The example first creates a variable ‘a’. The next line calls the function print(). By calling a
function the system jumps to the begin address of the function and starts executing the statements
of that function. When the function ends the system jumps back to the point from where the
function was called.

4

l Before calling a function it needs to be declared

l Call function by using its name and pass the arguments between ()
l void main()
{

print(); /* Call function print() */
}

Function Calls

Functions and Storage Classes

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

7

F u n c t i o n s a n d R e t u r n
A function can return a value. If a function does not return anything we have to specify void.

void print(void); /* Returns nothing */

When a function does return a value we have to specify what kind of value it returns.

double pi(void);

The example shows the signature of a function pi() which has no arguments but returns a double
value. We can return a value in a function by using the return statement followed by what we want
to return.

double pi(void)
{
 return 3.1415927;
}

If we specify that a function returns a result and we forget to place a return statement in that
function the compiler will generate a warning or error depending on the compiler switches.

If a function returns a value, we can use it in a calculation or assign it to a variable.

void main()
{
 double value;

 value = pi(); /* value is what the function pi() returns */
 value = 2 * pi(); /* value is 2 times the result of function pi() */
 printf("Pi: %f\n", pi()); /* Prints the value of pi on the screen */
}

5

l If function has no resulting value specify void
l void print(void);

l If it does return a value, specify the type of the return value
l double pi(void);

l Return the value using the return statement
l return [expression];

l Can use return value of function in calculations

Functions and Return Value

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

Functions and Storage Classes

8

It is not required to assign the value a function returns to a variable. It is possible to discard the
return value of a function.

void main()
{
 double value;
 pi();
}

In the above example we call the function pi() which returns a number. This number is not used in
any calculation or assigned to any value. Because we do not use the value of the pi() function it is
in this case redundant to call the function. This is not the case for all functions. Some functions
return an error value to specify if an operation succeeded or failed. Sometimes, if we do not use
error checking, we discard this value. But it is not redundant to call that function. For example the
printf() function also returns a value but it is not redundant to call it to print something on the
screen.

When a function returns a void and we assign the result value of that function to a variable we get
an error. This because void means nothing is returned.

void print(void);

void main()
{
 int val;
 val = print(); /* Causes an error */
}

Functions and Storage Classes

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

9

F u n c t i o n A r g u m e n t s

Often functions need input values to perform some action. For example the printf() function needs
the string to be passed that we want to print on the screen. When declaring a function we have to
specify the types of the input values (arguments) of that function.

int multiply(int a, int b);

Inside the function multiply() the variables ‘a’ and ‘b’ exist without declaring them inside the
function. The argument list can be seen as part of the variable declaration section inside a function.

int multiply(int a, int b)
{
 return (a * b);
}

The function multiply returns the multiplication of the two input values. We have to pass these
values to that function upon calling that function.

void main()
{
 int var1;
 int var2;
 int res;

 res = multiply(var1, var2); /* Pass the values of var1 and var2 */
 res = multiply(40, 30); /* Pass 40 and 30 */
}

The names of the variables we pass to the function multiply do not have to be the same of as the
argument variables inside the function. The variables ‘var1’ and ‘var2’ are not the same as ‘a’ and
‘b’. They can be the same but it is not mandatory.

The names of the variables ‘a’ and ‘b’ are bounded to the function multiply(). Passing the values
var1 and var2 is called “call by value”. The values of ‘var1’ and ‘var2’ are copied onto the stack
and are given the names ‘a’ and ‘b’. When the function multiply() ends, these variables are
destroyed. Changing the variables ‘a’ and ‘b’ inside the function multiply() have no effect on the
variables ‘var1’ and ‘var2’ because ‘a’ and ‘b’ are copies of ‘val1’ and ‘val2’.

6

lWhen a function has arguments we have to specify their types
l int multiply(int a, int b);

l Call function passing values or variables
l multiply(10, 20);

l Argument values are copied onto the stack
l Call by value

l Changing copies has no effect on original variables

Function Arguments

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

Functions and Storage Classes

10

R e c u r s i v e F u n c t i o n s

After creating and declaring functions the functions can be executed by calling the function. Most
times function calls are placed inside other function bodies. For example the main() function (the
beginning of the program) is the start of a chain reaction of function calls. From the main() you can
execute a function. For example multiply() which performs some action and may return a result.
The function you initially call can call other functions and that function can call other functions as
well so creating the chain reaction.

It is however possible that a function calls itself with different arguments. Such a function is called
a recursive function. Recursive functions are used a lot for data structures and mathematical
functions.
There is one important rule when creating recursive functions:
· They need a stop condition

For example let us take the algorithm for getting the Greatest Common Divisor.
The algorithm for finding the greatest common divisor (GCD) is:

 GCD = x if y == 0
 else GCD = GCD(y, x % y)

If we implement this in a function:

int GCD(int x, int y)
{
 if(y == 0)
 return x;
 return GCD(y, x % y);
}

7

l Functions can call itself

l Upon recursive call all local variables are created again

l Often used for mathematical expressions and algorithms

Recursive Functions

Functions and Storage Classes

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

11

S c o p e a n d S t o r a g e C l a s s e s
Each name which is used in a C program has a so-called “scope”. This can be seen as the range of
visibility of that name. For example, we could make a global variable which is known in every part
of a program, including the functions which make up that program. Similarly, we can define a name
which is only known in a local piece of code.

The types of scope are:
· Local scope: This refers to names which are declared and only usable within blocks.
· Function scope: This refers to names declared and only usable within functions.
· Program scope: These are names which are declared outside any function or block and can be

used everywhere, even from other source files. Names with program scope are often said to be
global.

· File scope: As with program scope but declared to be only visible in the current source file.

8

l Variables can be used in their scope

l Variable identifier limited to its scope

l Types of scope
l Local scope

l Function scope

l Program scope

l File scope

Scope of Variables

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

Functions and Storage Classes

12

A u t o m a t i c V a r i a b l e s
· Inside functions
· As a function argument

Automatic variables are the variables declared inside functions. When the function begins the
variables are created on the stack and when the function ends they are destroyed. These variables
include the arguments of the function.

void print(void)
{
 int auto_1;
}

void print_val(int a)
{
 int local_var;
}

void main()
{
 int local_main;
 print();
 print_val(local_main);
}

Inside the function main() the variable local_main is declared. This variable is created when the
function main() starts and is destroyed when the function ends. It is thus an automatic variable. The
call to the function print() executes that function. When the function print() is executed the variable
auto_1 is created on the stack. When the function is finished this variable is destroyed. The function
print_val() creates the argument a and its variable local_var. Both these variables are created when
the function starts and destroyed when it ends.
These local variables are therefore only available inside these functions. The function print_val()
cannot use auto_1.

9

l Variables inside functions are called automatic variables

l Automatic variables are created upon function start

l Automatic variables are destroyed upon function end

Automatic Variables

Functions and Storage Classes

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

13

G l o b a l V a r i a b l e s
Until now we declared variables inside functions. These variables are called automatic variables.
They can only be used inside these functions or we have to pass them as an argument to another
function. There are however variables which can be used by all functions of a program in the same
source file or even in another source file. These variables are called global variables and must be
declared outside a function.

int linenumber;
void print_line(void);

void main()
{
 int local;

 linenumber = 0;
 print_line();
}

void print_line(void)
{
 printf("Line : %d\n", linenumber);
 linenumber++;
}

The variable linenumber can be used by any function. The function main() gives it the value o and
the print_line() function uses it to print linenumber on the screen. The disadvantage of these global
variables is that any function can change them. We have no control any more over that variable. It
is therefore advisable to avoid the usage of global variables.

When we declare an automatic variable with the same name as the global variable we overrule that
global variable inside the function where the automatic variable is declared.

void main()
{
 int linenumber;
}

10

l A global variable is declared at file scope
l Can be accessed by all functions

l Can be used in any source file by any function

Global Variables

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

Functions and Storage Classes

14

E x t e r n a l V a r i a b l e s
When a source file has a global variable we can use it in any other source file as long as those
source files are linked together. But the compiler checks our code to see if we use variables that are
not declared. If we create a second source file with the following function the compiler would give
an error.

void print_more_lines()
{
 printf("Line : %d\n", linenumber);
 linenumber++;
 printf("Line : %d\n", linenumber);
 linenumber++;
}

The compiler always compiles one source file at a time. In this source file the variable linenumber
was not declared so it will give an error. But we want to use the global variable of the other source
file. If we declare the global variable linenumber again the program would have two global
variables with the same name. To declare the variable but don’t allocate memory for it (just a place-
holder) we have to use the keyword extern which specifies that the variable is defined in another
source file.

extern int linenumber;

void print_more_lines()
{
 ...
}

If we specify an external variable and we forget to declare it in another linked source file the linker
will give an ‘unresolved’ error.

11

l Possible to use global variable of another source file

l Use keyword ‘extern’ to declare it
l extern int linenumber;

l The keyword extern says the variable is created elsewhere instead of
this source file

lWe need to declare it else we cannot use it

External Variables

Functions and Storage Classes

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

15

S t a t i c G l o b a l V a r i a b l e s
The scope of a global variable is the entire program. It is often preferable to have a global variable
in one source file but this global variable should not be accessible by any other source file. This is
possible by specifying the variable as a static global variable. A static global variable is bounded to
the scope of the source file.

12

l Normally a global variable can be used by any source file

l Use the static specifier to bound its use to the current source file
l static int linenumber;

Static Global Variables

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

Functions and Storage Classes

16

S t a t i c V a r i a b l e s a n d F u n c t i o n s
In the previous example of global variables we use a global variable linenumber which was
incremented each time a line was printed. We also stated that we advise to avoid the usage of global
variables. So if we wanted to have the linenumber variable but not using a global variable we have
to create it inside the function main() and pass it every time to the function print():

int print(int linenumber);

void main()
{
 int linenumber = 0;
 linenumber = print_line(linenumber);
}

int print_line(int linenumber)
{
 printf("Line : %d\n", linenumber);
 linenumber++;
 return linenumber;
}

This has a few disadvantages. First we let the function main() create something that is used only by
the function print_line(). The second disadvantage is the rather cryptic call to the function
print_line(). We have to pass it the variable linenumber and let the function print_line() return the
changed value. Because, as you know, with functions the value is passed by value (a copy is made)
so changing the argument linenumber does not affect the original variable linenumber in the main()
function.
We can solve this by using a so called internal static variable. An internal static variable is assigned
an initial value but from there on it holds its last assigned value. An internal static variable is not
destroyed when the function ends.

13

l A static function variable is a kind of persistent variable

l Remembers the value between function calls

l Holds last value assigned

l Also called internal static variable

Functions and Static Variables

Functions and Storage Classes

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

17

Using this technique the print_line() function is transformed into:

void print_line(void);

void main()
{
 print_line();
 print_line();
 print_line();
}

void print_line()
{
 static int linenumber = 0;

 printf("Line : %d\n", linenumber);
 linenumber++;
}

The variable linenumber is initialised once and from that point on will remain its last assigned
value.

The output of the example is:

Line: 0
Line: 1
Line: 2

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

Functions and Storage Classes

18

R e g i s t e r V a r i a b l e s
Register variables are used for variables to speed up calculations. If a variable is a register variable
it is placed in a processor register when using it in an operation or calculation. Access to a variable
is stored in a processor register is much faster than access to a variable in main memory. This is
however a request to the system but is not always granted.
Modern compilers will optimise your code automatically and will place variables in a register when
possible.

14

l Request for variable to be placed in register
l register int a;

l Access to register variable is faster

l Not always granted

Register Variables

