
Decisions and Loops

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

1

Decisions and Loops

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

Decisions and Loops 2

O b j e c t i v e s
In this section we continue with a number of fundamental topics about the C language. The topics
are essentially 'procedural' in nature and if you have experience in Pascal, FORTRAN or some
other high level language you should not have many problems. The emphasis is on bringing control
and structure into the language.

The topics discussed in this chapter:
· The compound or block statement
· The if statement
· The for loop
· The while loop
· The do-while loop
· Break and continue statements
· Multiple choices, the switch statement
· Goto and labels

2

l Conditional Statements

l Loops

lModifying Loops

Overview

Decisions and Loops

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

3

T h e C o m p o u n d o r B l o c k S t a t e m e n t
The compound statement can be seen as a number of valid C statements which are related in some
way. To be more specific, separate statements which comprise a compound statement are included
in braces {}. A compound statement is also known as a block statement.
Local variables which have been defined in a block are destroyed when the block is exited. A
declaration is a statement.

Indent new blocks:

void main()
{
 int a;
 {
 int b;
 ...
 {
 int c...
 ...
 }
 ...
 }
}

3

Blocks and Statements

l Blocks are pieces of discrete code

l Blocks are bounded with braces {}

l Variables must be declared in the beginning of blocks

l Indent the statements inside blocks

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

Decisions and Loops 4

4

Conditional Statements

l Conditional statements are used to branch the execution of a
program

l Two types of conditional statements
l if - else

l switch

Decisions and Loops

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

5

T h e i f S t a t e m e n t
The if statement determines if a certain block of code needs to be executed or not. If the if
expression, which is a Boolean expression, evaluates to true the block is executed. If false another
block can be executed which is marked with the else statement.

The syntax of an if statement is:
 if (<expression>)
 <sub_statement>
 else
 <sub_statement2>

The <expression> must be of arithmetic or pointer type or of class type which can be converted to
one of the first two types. If the <expression> is nonzero the <sub_statement> is executed
otherwise the second sub statement is executed. The else block is not required.

if (a > b)
{
 printf("a is larger than b\n");
}
else
{
 printf("a is not larger than b");
}

The compound block brackets can be left out when the sub_statement has only one expression.
The above example could be written as:
if (a > b)
 printf("a is larger than b\n");
else
 printf("a is not larger than b");

We advise however to always use the braces. Leaving out these brackets is not advisable because
of future modifications to one of the sub statements of the if-else construction.

5

The if-else Clause

expression sub_statement

sub_statement2

True
(not equal 0)

False
(equal 0)

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

Decisions and Loops 6

Inside one of the sub statements, which is a block, another if-else construction can be created. This
nesting of if-else constructions can make the code very unreadable. This is because every time a
new block begins the code is indented. Indenting each time may cause to the text to flow of the
screen. Another way of writing the if-else clause may prevent this.

if (notmarried)
{
 group = 0;
}
else
{
 if (married)
 {
 group = 1;
 }
 else
 {
 if (livingtogether)
 {
 group = 2;
 }
 else
 {
 group = 3;
 }
 }
}

Checking these different possible paths can be difficult, the code is starting to become unreadable.
One solution for this nesting is writing this code in the else-if construction. It is not a different
syntax only another way of writing the if statement.

if (notmarried)
{
 group = 0;
}
else if (married)
{
 group = 1;
}
else if (livingtogether)
{
 group = 2;
}
else
{
 group = 3;
}

Decisions and Loops

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

7

 666

void main()
{

int a = 10;
int b = 20;

if (a < b)
{

printf("a is greater than b");
}
else
{

printf("a is smaller than b");
}

}

Example

if … else

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

Decisions and Loops 8

T h e s w i t c h S t a t e m e n t
The switch statement allows the programmer to transfer control to one of several statements
depending on the value of an expression. The switch statement is often used when according to the
value of an integer, a different action needs to take place.
The switch statement is almost equal to the if-else construction.

The syntax is:

switch(<expression>)
{
 case <const_expression1>:
 <sub_statement> [break;]
 case <const_expression2>:
 <sub_statement> [break;]
 case <const_expression3>:
 <sub_statement> [break;]
 default:
 <sub_statement>
}

When none of the const_expressions equals the value of the expression, the default sub_statement
is executed.

The break statement is optional in the different cases. When it is left out all the following
sub_statements are executed until a break statement or the end of the switch is reached.

The following program shows how the switch statement works; it allows an integer to be entered
and the value given is printed on the screen.

7

Conditional Cases

l The switch clause is used for situations where there is a single
variable or expression which can have a number of values

l Each value is a different branch

l The “value” expression needs to be a constant expression

Decisions and Loops

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

9

/*
 Program to show how the switch statement works. Incidentally,
 the use of the break statement is also shown in this example.
 (C) Datasim BV 1995
*/

#include <stdio.h>
#include <stdlib.h>

void main()
{
 char c;
 c = getchar(); /* Gets a character from the keyboard */

 /* Now we test for c using the switch statement */
 switch(c)
 {
 case 'a':
 case 'b':
 case 'c':
 printf("You have chosen a, b or c\n");
 break; /* Exit the switch */
 case 'd':
 printf("You have chosen the d character\n");
 break; /* Exit the switch */
 default:
 /* When no condition is met */
 printf("You choose something that is not a, b, c or d\n");
 break;
 }
}

There can be only one default label in a switch statement.

888

Example

Switch

void main()
{

int a = 10;

switch(a)
{

case 10:
printf("value is 10"); break;

case 11:
printf("value is 11"); break;

case 12:
printf("value is 12"); break;

default:
printf("Unexpected value"); break;

};
}

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

Decisions and Loops 10

9

Loop Constructions

l Loops are used for iterations in the code

l Single piece of code is executed several times

l Three types of loops
l for-next

l while

l do-while

Decisions and Loops

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

11

F o r L o o p
The syntax of the for statement is

 for (expression1; expression2; expression3)
 <sub_statement>

The different expressions serve the following purposes:
expression1: Used for initialising the loop variable
expression2: The stop-criteria of the for loop. While this expression yields true, the sub-statement
is executed.
expression3: The post iteration expression. After the sub_statement is executed this expression is
evaluated. Mostly used for incrementing the loop variable.

Any of the three expressions can be left out.

Examples of for statements
1. Iterating from 0 to 10 and printing the corresponding number.

 for (j = 0; j <= 10; j++) printf("%d\n", j);

2. Creating an infinite loop

for (;;)

10

for Loop

l The for loop is often used when the number of iterations is known

expression2 sub_statement

True
(not equal 0)

False
(equal 0)

expression3

expression1

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

Decisions and Loops 12

11

void main()
{

int cnt;

for (cnt=0; cnt<10; cnt++)
{

printf("value is %d\n", cnt);
}

}

Example

for loop

initialization expression

conditional expression

iteration expression

Decisions and Loops

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

13

12

for Loop

l Any of the expressions can be left out

l Smallest expression possible (endless loop):
l for (;;)

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

Decisions and Loops 14

W h i l e L o o p
The while statement has a syntax in the form:

 while (<expression>)
 <sub_statement>

In this case the <sub_statement> is executed repeatedly until the value of the <expression>
becomes zero. The test takes place before each execution of the sub_statement.

while (a > 10)
{
 a--;
}

When creating a do-while loop do not place a semi-colon ';' after the while expression. Placing a
semicolon can create an infinite loop.

int a = 80;
while (a < 90); /* Can cause problems */
{
 a++;
}

The while loop has become an infinitive loop. The variable ‘a’ equals 80, the loop checks to see if
the value of ‘a’ is smaller than 90. If so it executes the empty statement following the while
expression (only a semicolon). The loop has become infinitive only because there is an extra
semicolon after the while expression. The compiler does not give a warning or error.

13

while Loop

l while is used when the number of iterations is not known

l while is executed zero or more times

expression sub_statement

True
(not equal 0)

False
(equal 0)

Decisions and Loops

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

15

141414

void main()
{

int cnt=0;

while (cnt < 10)
{

printf("value is %d\n", cnt);
cnt++;

}
}

Example

while loop

while condition is true
block is executed

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

Decisions and Loops 16

D o W h i l e L o o p
The do-while statement is similar to the REPEAT UNTIL statement in Pascal. The syntax is:

 do
 <sub_statement>
 while (<expression>); /* do not forget the semicolon */

The sub statement is executed at least once. After the sub statement is executed the expression is
evaluated. If it yields to true the sub statement is executed again until the expression yields to false.
The big difference between the normal while and the do-while loops is that the while construction
first checks the expression and the do-while executes the statement once before checking the
expression. In the do-while construction the semi-colon is mandatory after the while expression.

do
{
 a--;
}
while (a >10);

15

l The do-while loop is executed one or more times

lMuch like the while
construction

do-while Loop

expression

True
(not equal 0)

False
(equal 0)

statement

Decisions and Loops

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

17

161616

Example

do-while loop

void main()
{

int cnt=1;

do
{

printf("value is %d\n", cnt);
cnt++;

}
while (cnt < 10);

}

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

Decisions and Loops 18

B r e a k a n d c o n t i n u e
All the loop constructions discussed before can be stopped even before the expression yields to
false by using the break statement. When the break statement is executed, it breaks the loop.

for (counter = 1; counter < 11; counter++)
{
 printf("%d\n",i);
}

The for loop exits when the expression ‘counter < 11’ yields to false. Another way of exiting the
loop would be by using the break statement.

 The next example exits the loop when the counter reaches 5:

for (counter = 1; counter < 11; counter++)
{
 if(counter == 5)
 break;

 printf("%d\n",i);
}

The output:
1
2
3
4

The loop now prints the numbers of one to four and exits. The break statement causes the for loop
to exit. Execution continues after the for sub statement. This construction can be used in the while
and do-while as well.

17

Break and Continue

l break Used for breaking out of a loop

l continue Causes next iteration to take place

Decisions and Loops

This material is intended for students of the “C++ Programming for Financial Engineering” certificate
A joint project by the Baruch MFE program, Datasim Education BV and Quant Network LLC

© Datasim Education BV 2011. Unauthorized distribution is prohibited.

19

The continue statement causes the next iteration to take place. Take a look at the for loop again,
only slightly modified:

for (counter = 1; counter < 11; counter++)
{
 if(counter == 5)
 continue;

 printf("%d\n",i);
}

The output:
1
2
3
4
6
7
8
9
10

The break statement has been changed to continue. The loop does not exit at 5 but forces the for
loop to go to the next iteration. This means that the counter is increased and the stop-criteria of the
for loop (counter < 11) is executed again. The number 5 is not printed. On the screen a list of the
numbers one to four and six to ten will be displayed.

The construction with break is often used in message processing systems, where you create an
infinite loop that needs to be exited when a quit message is received.

For example:

for (;;)
{
 ...
 if (/* Quit message */) break; /* Causes exit the for loop */
 ...
 if (/* User wants to end */) break;
 ...
}

Infinite loops are useful when creating event driven software (for example, graphical user interfaces
and CAD software).

http://www.quantnet.com/forum/threads/faq-c-for-financial-engineering-online-course.7376/

Decisions and Loops 20

G o t o a n d L a b e l s
A lot of languages have the possibility to jump to a certain location in the code. In most procedural
languages this possibility is unavialable. In C it is possible to just jump to a certain position in the
code. It is however not recommended to do so because it is breaking up your procedural
construction.

The statement that can cause a jump is the goto statement. With a goto statement it is possible to
jump to a certain label. A label is marked by a name followed by a colon. For the name of the colon
the same rules apply as for identifiers. After the colon it is mandatory to place at least one
statement. There are however a few restrictions to the jump. The label the goto statement jumps to
must reside in the same function. Again watch out using this statement. It creates spaghetti syntax.

{
 ...
 ...
 for(...)
 {
 ...
 ...
 while(...)
 {
 ...
 ...
 if(...)
 {
 goto end;
 }
 }
 }
 ...
 ...
end:;
}

18

Goto and Labels

l The goto statement jumps to a certain label

l It should not be used

