• Countdown to the 2025 QuantNet rankings. Join the list to get the ranking prior to public release!

The most enlightening calculus books

  • Thread starter Thread starter Chris
  • Start date Start date
Joined
5/5/06
Messages
102
Points
28
Hey guys,

Got this interesting blog from a friend on the most enlightening calculus books. With real-analysis and probability coming up for the part-timers and incoming full timers this may be an interesting read.

The most enlightening Calculus books

https://www.amazon.com/Way-Remember-History-Mathematics-V/dp/0821806335/

In Walter Rudin's autobiography The Way I Remember It, he comments on a calculus book defining it as "too good to be widely used" and further states that:
Widely used calculus books must be mediocre. — W. Rudin​
The temptation to discard that statement as elitist may be strong, but it is worth noticing how there is so much truth to it. Education is embracing a dangerous downward spiral towards the oversimplification of mathematics in favor of letting every student pass, despite their actual understanding of the subject.
Dumbing down mathematics is a dangerous trend which affects students at all levels, from primary school where children are no longer taught how to perform division by following the standard algorithm to a complete emphasis on anti-racist mathematics and calculus courses where (\delta) and (\epsilon) are not mentioned while teaching limits, because they are considered to be "too complicated" or "too confusing" for most students. Of course, this is not the case everywhere, and bright students who study on their own will always exist (despite the fact that the social satire of Idiocracy may be more accurate that we like to think).
This problem exists because educational changes such as these reflect negatively on the competence level of the average student, meaning that a decent chunk of the next generation of mathematicians, engineers and scientists will be facing increasingly complex, unsolved problems and challenges with an inadequate amount of preparation. Most students have a tendency to adapt their study levels around the difficulty of the examinations they will be exposed to. In other words, no matter how easy a Calculus course is, there will always be a majority of C students. Making the courses dumber has only resulted in the creation of artificial A, B and C students who wouldn't stand a chance against a C student of the 50's, in terms of understanding and mastering the subject.
It is therefore very important to consider what are the great classical books available that can provide a solid basis for studying mathematics and that can guide, inspire and enlighten the student who wishes to learn mathematics the way it should be. To be factual there are still institutions which adopt valid textbooks and didn't jeopardize their curricula too much, but that's not the general rule unfortunately. What are then the best Calculus books? "Best" is very relative to the student, but in this context I will consider what is "best" for relatively bright students who have a genuine interest in calculus/mathematics. Books that I myself have found very appealing to me, and therefore my list is declaratively biased. All of the following books do a very good job of covering the material, explain the subject matter well, have mathematical rigor, proofs for the most important theorems, challenging exercises, and are able to really teach Calculus I at a sufficiently high level. Each of the books listed below is able to enlighten, guide and inspire the reader who is willing to put the time and effort into going through them:
  1. Calculus by Michael Spivak: I can't praise this book high enough, to me this is THE calculus book. It has a great selection of topics, careful and extremely rigorous proofs, and it goes well beyond the scope of calculus, so much so that a better title would be "Introduction to the beauty of Real Analysis", because it really bridges between calculus and more advanced real analysis, showing how beautiful mathematics is. Spivak literally guides you in a enlightening experience, discovering Calculus, starting from the properties of the numbers and building on top of it. The examples are very meaningful, the explanations are clear, and the subject is so well presented and motived. It is, in my opinion, one of the most inspirational mathematics books I've ever read. The exercises proposed at the end of each chapter test different levels of understanding and don't fail to challenge the reader on the subject. These are exercises which really make you feel like you are taking a second course on the topic. In fact, I'd say that the exercise sections of this book are especially valuable, and you're highly encouraged to work through all of them. This book is great for anyone who is serious about mathematics and who wishes to have a very solid foundations upon which to face the challenges of more advanced courses down the road. Spivak's book comes with a few selected solutions to odd numbered problems, but if you are self-studying or are disciplined enough, you may want to consider the associated answers book (which by the way is in print, despite what Amazon lists on their pages).
https://www.amazon.com/Calculus-Michael-Spivak/dp/0914098896/
  1. Introduction to Calculus and Analysis, Volume 1 by Richard Courant and Fritz John: a classical, well thought introduction to Calculus and Analysis in one variable, where explanations are very clear and the material is covered in a way which provides a good deal of motivation. The approach is more practical and less abstract than other Calculus books, while conserving a perfect balance between mathematical rigor and intuition. This book comes with plenty of exercises that will reinforce the knowledge of the student. The abundance of physics applications, make it ideal for physics majors and engineers as well. This is the first volume of a trilogy republished by Springer, if you are serious about Calculus, you may want to also consider the other two more advanced volumes: Volume II/1 and Volume II/2. An absolutely beautiful set of books.
  2. Calculus, Vol. 1: by Tom M. Apostol: a very comprehensive book, methodical in the theorem/proof approach, adopted by many high-end universities as a first year textbook for courses in calculus or calculus and theory. Its coverage of the subject is impressive and provides a good selection of standard exercises. It is an excellent reference and textbook, albeit you may find it a bit dry and less inspirational than others at first, but you will eventually develop an appreciation of its teaching method. You may want to note that this is the first volume, and that the second volume is also worth getting: Calculus, Vol. 2: Multi-Variable Calculus and Linear Algebra with Applications
https://www.amazon.com/Introduction-Calculus-Analysis-Classics-Mathematics/dp/354065058X/
  1. A Course of Pure Mathematics by G.H. Hardy: this is the 10th edition of a book first published in 1908 by the great mathematician G.H. Hardy. It is a classic textbook that brought much needed rigor, and reformed the way math was taught in the UK in the twentieth century. This book is intentionally written to address the brightest students of the time, therefore it is a very inspirational and enthusiastic piece of work with plenty of elegant proofs and suggestions, and exercises that are definitely very challenging. For example, there are exercises coming from the Math Tripos examinations (at Cambridge) from early part of the last century, and they will definitely keep you busy for some time. Some notations are a bit outdated and it is mostly an introduction to real analysis that may be a bit too much as a first book. But this book is a masterpiece nevertheless, and it's a classic that as a mathematician you will want to have in your library. I think it's ideal as a reference and as a supplement to other textbooks (e.g., Spivak).
https://www.amazon.com/Course-Mathematics-Cambridge-Mathematical-Library/dp/0521092272/
More than just calculus, these also serve as introductions to Analysis, and in general to mathematics at an undergraduate level. They are challenging, not for the faint heart, but ultimately a joy for math lovers.
 
Last edited by a moderator:
Personally, I think the best one I ever seen is
"Calculus" by Swokowski and Olinick, and Pence. (6thEd)
Publised by PWS.
I don't think you can find it anymore. Maybe Ebay?

Amazon has it listed offered by other "used and new" sellers.
 
Rudin himself wrote a good book on Analysis.

Also, there are two books I would like to buy one day Introductory Real Analysis by Kolmogorov and Fomin and Elementary Real and Complex Analysis by Shilov.

By the way, (\delta) and (\epsilon) are excluded from Calculus taught in the US; they are present in Freshman Analysis in many other countries like Russia :)

https://www.amazon.com/Introductory-Analysis-Dover-Books-Mathematics/dp/0486612260/
 
books I would like to buy one day Introductory Real Analysis by Kolmogorov and Fomin

I studied Functional Analysis with this book back in Russia. :thumbsup:
If not mistaken, I had brought a copy to New York... It's in Russian though...
 
chris said:
In Walter Rudin's autobiography The Way I Remember It, he comments on a calculus book defining it as "too good to be widely used" and further states that:
Widely used calculus books must be mediocre. — W. Rudin
The temptation to discard that statement as elitist may be strong, but it is worth noticing how there is so much truth to it. Education is embracing a dangerous downward spiral towards the oversimplification of mathematics in favor of letting every student pass, despite their actual understanding of the subject.
dude i absolutly quote you...

When i've heard that someone doesn't mention delta and Epsilon while doing limits... i jump on the chair!!!

anyhow i have to say a thing: many of rudin's books are a bit too hard and criptic... they are very good manuals or antology... but they aren't good at all for a student at his first approach.
 
I studied Functional Analysis with this book back in Russia. :thumbsup:
If not mistaken, I had brought a copy to New York... It's in Russian though...

I used that book as well (but borrowed it from a library), and I do have its Russian version :) but its more difficult to read than English :) I'm not used to Russian math words.
 
reply

Awesome topic. I actually thought this might be a 'trick' question on the word 'calculus'.

Surprisingly, not many caught it. 'stochastic calculus' ehehhheeh

I'm going to recommend some of my personal favs, which according to amazon are recommended by mark joshi.

Stochastic Calculus for Finance II: Continuous-Time Models (Springer Finance) by Steven E. Shreve (Hardcover - Jun 3, 2004)

Stochastic Calculus for Finance I: The Binomial Asset Pricing Model (Springer Finance) by Steven E. Shreve (Paperback - Jun 28, 2005)
 
Dr. Shreve's books are classics :) and are probably used in every FE / FinMath / CompFin program around the world.
 
Back
Top Bottom