(x_0 =1)
(x_n =1+\frac{2}{3x_{n-1}^2})
(x_1 = \frac{5}{3})
(x_2 = \frac{31}{25})
(x_3 = \frac{4133}{2883})
Can you find a closed form for (x_n)
This is the only one I can't figure out. I spent a good half hour on it, but it doesn't lend itself to any tricks I've seen before (it's not linear recursive, so I can't write down a linear operator and diagonalise it, it doesn't become more tractable if I write down (x_n) in terms of (x_{n-2}) or even earlier entries, I don't see an obvious way to do a "boomerang integration" type trick, and the pattern is not obvious enough that I can write down the answer and prove using induction).
Oh well.
Agreed, this one is hard. I tried many methods too. It looks like the answer(if it exists, which I doubt) is really ugly.