These are questions asked at some banks for front office or research quant position.
1.If a is a column vector, then how many non-zero eigenvalues does the matrix aa' have? what are the eigenvalues? What are the corresponding eigenvectors? What are the eigenvectors corresponding to the zero eigen values?
2. if w is an standard brownian motion, is w^3 a martingale?
3. prove that the price of a call option is a convex function of the strike price.
4. Suppose you are throwing a dart at a circular board. What is your expected distance from the center? Make any necessary assumptions. Suppose you win a dollar if you hit 10 times inside a radius of R/2, where R is the radius of the board. You have to pay 10c for every try. If you try 100 times, how much money would you have lost/made in expectation? Does your answer change if you are a pro and your probability of hitting inside R/2 is double of hitting outside R/2?
5. Suppose you have an old machine, which does not have a capability to multiply two numbers, but does have a capability to square a number. It also has addition and bit shift operators. Implement multiplication and division (integer division only)
6. Again the previous question, now you dont even have the squaring capability, but only bit shift, and addition. Implement multiplication
7. what do you know about const.
8. What is the problem with virtualization from the point of view of optimization. What can a compiler do when a function is not virtualized?
9. How is virtuality implemented in
C++
10. integrate log^n x.
11. prove, from first principles, the differential of e^cos(x).
12. given the matrix A=(5 -3;-3 5), find a matrix M, such that A=M*M. Now find a matrix M such that A=M'*M
13. Suppose x_1, x_2...x_n are IID from [0,1] uniform interval. What is the expected value of the maximum. What is the expected value (max-min).
14. Suppose I have a routine that can sort n numbers in O(n) time. Prove me wrong.
15. Suppose you have the implied vol curve for call options. What is the arb free price of a digital struck at k given this implied vol curve.
16. Pricing a barrier option with a discrete barrier.
17. Distribution of the max of a brownian motion. Use it to price digital american and european call options.
18. Explain put call parity.
19. At one interview, I was asked to explain, in great detail, whatever I knew about the current credit problem (for about 25 mins). I did well only because I was reading the WSJ.
20. Given a fair coin, what is the expected number of trials you need to go to get 2 consecutive heads. 3 consecutive heads. generalize to N.
21. What is the variance on the number of trials in the question above?